Auteur : Sylvain Roudaut
Joël BIARD, Hypothèse matérialiste et pensée radicale. La philosophie de la nature de Blaise de Parme, Paris, Vrin, « Sic et Non », 2022, 194 p.
Blaise de Parme, penseur ayant été actif au sein de plusieurs universités italiennes à la fin du XIVe siècle et au début du XVe siècle, demeure une figure méconnue au regard d’autres grands noms de la philosophie médiévale latine, en partie à cause du nombre encore important de ses œuvres inédites. Dans cet ouvrage, un des rares spécialistes de cet auteur, Joël Biard, qui lui a déjà consacré de nombreuses études et a édité plusieurs de ses œuvres, se penche sur un aspect de la pensée de Blaise de Parme par lequel on tend souvent à caractériser sa doctrine, à savoir son prétendu matérialisme, qui lui valut le surnom de « Docteur Diabolique ». Joël Biard se propose d’évaluer de manière critique cette caractérisation, en reprenant pièce par pièce le dossier de ce matérialisme supposé.
Par matérialisme, qui est un terme qui n’existe pas au XIVe siècle, ou ne sert en tout cas pas à désigner une doctrine philosophique, on peut assurément entendre différentes choses, qui ne se recoupent guère et n’ont pas les mêmes implications. Comme le rappelle l’introduction de l’ouvrage, ce que nous appellerions aujourd’hui « matérialisme » renvoie déjà confusément au Moyen Âge à des thèses assez diverses, non nécessairement solidaires les unes des autres, et généralement associées à des figures largement fantasmées car mal connues : Épicure et Démocrite, bien sûr, mais aussi Alexandre d’Aphrodise et Galien (p. 9-10).
L’ouvrage se propose d’examiner divers aspects doctrinaux où Blaise de Parme défend des positions que l’on pourra qualifier de « matérialistes », en prenant soin de préciser chaque fois le sens de ce terme. Les analyses se basent sur différentes œuvres qui présentent un intérêt direct pour cette question, en particulier (mais pas seulement) les Questions sur la Physique, celles sur le De generatione et celles sur le De anima. L’ouvrage est organisé en trois parties principales, correspondant à trois thèmes où l’auteur entreprend d’évaluer des thèses que l’on pourrait qualifier de matérialistes.
La première partie se penche sur l’hypothèse d’une conception moniste de la nature, à savoir la possible réduction de l’ensemble des êtres et des processus naturels à un seul principe, qui serait un principe matériel, comme l’avaient posé les philosophes dits présocratiques. Cette question est abordée par Blaise dans ses Questions sur De generatione et sur la Physique. Joël Biard montre qu’il n’y accepte jamais un monisme matérialiste radical, si l’on entend par là une ontologie où seule la matière existerait, indépendamment de toute autre entité, à savoir des formes substantielles ou des accidents. Blaise de Parme se montre de toute évidence attiré par des hypothèses où l’on se dispenserait de ces entités familières du bestiaire scolastique pour ne garder que la matière. Il les juge fausses en dernière instance, mais les qualifie de possibles. Il conclut à la nécessité de postuler au moins des qualités (chaleur, froideur, lourdeur, etc.) pour expliquer la constitution et le mouvement des corps. Expliquer la nature requiert donc de manière minimale de la matière et des qualités (p. 34). Le philosophe se montre plus hésitant quant à la nécessité d’ajouter à ce schéma explicatif des formes substantielles, de même que sur la possibilité de réduire les formes substantielles à des qualités ou des complexions de qualités. Malgré tout, il accepte les formes substantielles car il reste difficile d’expliquer sans elles certains phénomènes, comme le fait que de l’eau bouillante tend à redevenir froide quand on l’éloigne de sa source de chaleur (p. 29).
Pour résumer, malgré une certaine attirance pour des hypothèses où seule la matière existerait, il semble revenir à un inventaire ontologique relativement classique : forme, matière, accidents. En réalité, Joël Biard montre que cette position ne reste que probable aux yeux de Blaise de Parme, qui n’écarte jamais complètement l’idée qu’on puisse se dispenser de formes, ou les réduire à des qualités. Par ailleurs, il souligne que les relations entre ces concepts, ainsi que d’autres notions fondamentales de philosophie naturelle comme celles de principe et d’éléments, sont profondément reconfigurées par lui. Un des résultats les plus importants en est que les qualités inhèrent selon lui directement à la matière, qui est le véritable sujet de toute forme ou de tout accident. Cette thèse était déjà présente chez des auteurs parisiens du XIVe siècle que Blaise de Parme exploite constamment, comme Jean Buridan et Marsile d’Inghen, qui admettaient que des qualités comme la chaleur ou la couleur inhèrent directement à la matière, et non pas au composé hylémorphique comme dans la conception standard du rapport entre substance et accidents. Blaise de Parme, toutefois, pousse cette idée à l’extrême en l’appliquant non seulement aux qualités sensibles mais encore aux qualités spirituelles, allant parfois jusqu’à poser que ces qualités sont étendues au sein de la matière. Comme l’écrit l’auteur, « il ne serait pas inexact de dire, moyennant des précisions, que pour Blaise dans la matière il y a de la pensée » (p. 163).
La seconde partie de l’ouvrage porte sur le mode d’émergence de nouvelles substances ou de nouvelles formes dans la nature. Parmi les thèmes pouvant suggérer une forme médiévale de matérialisme, on trouve la question de savoir si la matière pourrait à elle seule engendrer de nouvelles formes ou substances. Si Blaise se montre très ferme sur l’impossibilité pour la matière seule d’engendrer de nouvelles substances, il reconnaît que savoir si les qualités, indépendamment de toute forme substantielle, constituent des conditions suffisantes à la génération substantielle est une question beaucoup plus délicate, directement associée au Moyen Âge au nom d’Alexandre d’Aphrodise. L’ouvrage montre que, là encore, Blaise de Parme ne souscrit pas à ce que l’on pourrait attendre d’un matérialisme tel que celui attribué à Alexandre. Il refuse qu’une qualité engendre une substance par elle-même car il existe des relations hiérarchisées de perfection au sein de la nature, qui définissent des relations de causalité possibles et impossibles entre choses de différents ordres – le moins parfait ne pouvant pas produire le plus parfait (p. 96). Ce principe, qui joue un rôle important dans la pensée du philosophe parmesan, n’empêche pas les qualités de conserver un rôle instrumental dans la génération : la cause principale dans la production de nouvelles substances est le ciel, mais les qualités s’insèrent dans un réseau de causes concourantes où elles sont les instruments de cette causalité directement actifs au sein de la matière. Par ailleurs, bien que Blaise n’adhère pas exactement à la position qu’on attribue alors à Alexandre d’Aphrodise, il n’en défend pas moins des thèses radicales sur l’émergence des substances, soutenant par exemple qu’une certaine proportion de qualités, sous une configuration adéquate du ciel, peut suffire à engendrer un animal complexe même en l’absence de parents de même espèce (p. 84).
Mais c’est peut-être dans la troisième partie de l’ouvrage qu’on aperçoit davantage encore l’intérêt de Blaise de Parme pour des thèses qu’on pourra qualifier de matérialistes. Cette dernière partie expose ses positions principales concernant la nature de l’âme, de ses opérations et de son rapport au corps. Blaise de Parme présente là encore des idées radicales sur la nature de l’âme sur le mode d’hypothèses plus ou moins probables. Il apparaît certes ferme sur certains points, soutenant notamment sans ambiguïté la thèse de l’unité (ou unicité) de la forme substantielle dans tout composé et, donc, celle de l’unité de l’âme dans le cas de l’être humain (p. 128). Ses positions sur les autres grandes questions de la psychologie médiévale se montrent cependant plus nuancées. Concernant celle de la séparabilité de l’âme humaine vis-à-vis du corps, il oppose comme incompatibles le point de vue du philosophe, pour qui cette séparabilité ne peut être démontrée, et celui du fidèle qui y croit (p. 142). À propos de la liberté, Blaise classe différemment les opinions possibles, selon que l’on tient pour l’autodétermination de la volonté humaine ou pour une version forte du déterminisme, qui pourrait d’autant mieux s’inscrire dans son système que celui-ci attribue un rôle central à la causalité des astres. Les deux positions sont philosophiquement défendables, mais Blaise affiche une préférence pour la liberté de la volonté. Il ménage même d’ailleurs une place pour des facteurs d’indétermination au sein de l’autre modèle (déterministe) qui n’est donc pas un nécessitarisme strict (p. 169-170).
Le matérialisme de Blaise de Parme s’exprime en fait surtout dans deux thèses : d’une part, l’affirmation que les qualités intellectuelles et morales produites par l’âme intellective se trouvent dans la matière ; d’autre part, celle qu’il demeure possible que l’âme intellective et ses opérations ne soient que des processus matériels – thèse propre au point de vue philosophique que Blaise de Parme développe clairement dans une détermination d’une question sur le premier livre du De anima : « que l’âme intellective de l’homme soit éduite de la puissance de la matière, engendrable et corruptible, n’importe qui doit le concéder » (p. 145).
Au terme de la lecture de cet ouvrage assez court – mais dense –, on est effectivement en mesure d’apprécier en quel sens les idées de Blaise de Parme peuvent être décrites comme des hypothèses matérialistes. Ce « matérialisme » est très éloigné de celui qui se développera au XVIIe siècle. Il n’est pas atomiste, s’exprime dans une ontologie de qualités réelles, et résulte d’une conjonction de sources assez éclectiques : celle de la tradition nominaliste parisienne, promouvant des solutions généralement réductionnistes aux problèmes philosophiques, des thèses astrologiques que Blaise de Parme mobilise pour étayer sa théorie de la causalité naturelle, et de l’influence des théories médicales, favorables aux explications des processus physiques, biologiques et psychologiques en termes de complexions qualitatives.
La synthèse cohérente à laquelle parvient l’ouvrage de Joël Biard constituait pourtant une véritable gageure. Blaise de Parme est en effet un philosophe dont l’une des caractéristiques les plus remarquables est de présenter presque systématiquement plusieurs réponses possibles à une même question, en attribuant souvent – mais pas toujours – à ces réponses un degré de probabilité qui indique sa préférence, ou précisant de quel point de vue une position particulière est défendable. Il lui arrive de proposer des positions divergentes vis-à-vis d’une même question traitée en différentes œuvres, l’une de ses œuvres majeures – les Questions sur la Physique – nous étant qui plus est parvenue en deux versions assez différentes. Un des grands mérites de l’ouvrage est la clarté admirable et le caractère pédagogique de l’exposition, qui permettent de bien situer parmi les diverses figures du matérialisme médiéval les idées de Blaise de Parme. L’auteur parvient à en offrir une analyse qui pourra servir d’introduction à la pensée du philosophe tout en proposant simultanément, en s’appuyant dans une large mesure sur des sources encore inédites, une étude méticuleuse et experte faisant le point sur le matérialisme qui lui est attribué.
L’ouvrage ouvre aussi un certain nombre de perspectives sur d’autres aspects de cette œuvre qu’il invite à étudier. C’est le cas, en particulier, de la méthode d’investigation philosophique qui en sous-tend les idées. Joël Biard note que la notion « d’hypothèse » choisie pour le titre de l’ouvrage permet de « mettre en valeur un mode de pensée qui, bien au-delà de la pratique usuelle de l’argumentation pour et contre précédant une détermination, explore la structure et les conséquences de plusieurs doctrines possibles, les confronte, les pousse à l’extrême jusqu’à exhiber leurs limites » (p. 181). Si l’auteur se concentre avant tout sur les sources de Blaise de Parme, il convient de remarquer que ce dernier point élargit certainement les horizons d’étude de l’évolution de la pensée de la fin du Moyen Âge et des transformations des méthodes philosophiques dans l’Italie du Nord au XVe siècle. On est en tout cas convaincu au terme de la lecture de cet ouvrage qu’on a ici affaire à l’un des penseurs les plus originaux de la fin du Moyen Âge, assurément éclectique mais aussi profondément radical, d’une grande indépendance d’esprit et, si l’on ose dire, philosophiquement courageux. Alors que les études sur Blaise de Parme manquent encore cruellement, et que de nombreux textes sont encore inédits, on doit donc remercier Joël Biard de livrer cette étude importante qui restera certainement un ouvrage de référence sur la question.
Sylvain Roudaut
Retrouver ce compte rendu et l’ensemble du Bulletin de philosophie du Moyen Âge XXV chez notre partenaire Cairn
Pour citer cet article : Joël BIARD, Hypothèse matérialiste et pensée radicale. La philosophie de la nature de Blaise de Parme, Paris, Vrin, « Sic et Non », 2022, 194 p., in Bulletin de philosophie du Moyen Âge XXV, Archives de philosophie, tome 87/3, Juillet-Septembre 2024, p. 199-202.
♦♦♦
Daniel A. DI LISCIA and Edith D. SYLLA (éd.), Quantifying Aristotle. The Impact, Spread and Decline of the Calculatores Tradition, Leiden-Boston, Brill, « Medieval and Early Modern Philosophy and Science » n° 34, 2022, 479 p.
On sait depuis longtemps qu’une vague de quantification ou de mathématisation des phénomènes caractérise la philosophie du Moyen Âge latin tardif, portée en particulier par un groupe de penseurs actifs dans le deuxième quart du XIVe siècle, souvent désignés comme les « Calculateurs d’Oxford » ou encore, de façon plus controversée, les « Mertoniens », à cause du rattachement de leurs principaux membres au Merton College d’Oxford. Depuis les travaux pionniers de Pierre Duhem, d’Anneliese Maier et de Marshall Clagett, la question du rôle exact de cette quantification des propriétés naturelles dans l’avènement de la science moderne a divisé les chercheurs, de même que la relation – continuité ou rupture ? – qu’il convient de poser entre Moyen Âge et modernité. Alors que des études fondamentales comme celles de James Weisheipl et Edith Sylla ont permis de mieux identifier les représentants principaux – Thomas Bradwardine, Roger Swineshead, Jean Dumbleton, Guillaume Heytesbury et Richard Swineshead – du mouvement des « Calculateurs d’Oxford », le début du XXIe siècle a vu l’arrivée de nouvelles éditions critiques et études sur d’autres figures plus méconnues qui lui sont rattachées, comme Richard Kilvington, Roger Roseth ou Robert Halifax. Ces travaux, ayant enrichi notre compréhension de l’environnement intellectuel de ce mouvement, ont compliqué simultanément les questions liées à sa définition.
C’est dans ce contexte que s’inscrit la publication de ce volume collectif consacré aux Calculateurs, édité par Daniel Di Liscia et Edith Sylla, deux éminents spécialistes de ce courant. Le volume rassemble quatorze contributions couvrant de nombreux auteurs, des figures centrales des Calculateurs d’Oxford et de leurs précurseurs, aux penseurs qu’ils inspirent à partir du XIVe siècle, jusqu’à la réception tardive de leurs œuvres et au déclin de leur influence. Un premier groupe de contributions est constitué d’études sur des noms relativement familiers de la philosophie du premier quart du XIVe siècle. L’étude de Cecilia Trifogli ouvrant le volume porte ainsi sur deux auteurs ayant directement inspiré ce courant, Thomas Wilton et Gauthier Burley. Elle se penche sur le problème de la cessation d’un instant, à savoir si cette cessation dure un certain temps ou s’accomplit en un instant. Cette étude, qui ne porte pas sur des questions de quantification proprement dites, souligne l’importance du contexte logique dans lequel s’inscrivent généralement les travaux des Calculateurs. Ce contexte fait d’ailleurs l’objet d’une autre contribution, due à Stephen Read, qui examine le traitement des propositions « insolubles », c’est-à-dire des paradoxes sémantiques, chez plusieurs figures centrales des Calculateurs (Thomas Bradwardine, Richard Kilvington, Roger Swineshead, Guillaume Heytesbury, Jean Dumbleton). Si cette contribution démontre le caractère séminal des analyses de Bradwardine, qui inspire la plupart des solutions ultérieures qui l’acceptent ou la rejettent, elle souligne aussi la diversité des types de solutions apportées à l’analyse de ces types de propositions.
D’autres articles de la première partie du volume portent plus particulièrement sur les techniques de quantification qui ont valu aux Calculateurs leur nom. L’article d’Elżbieta Jung, reprenant une hypothèse déjà développée dans des études antérieures, entend réévaluer le véritable point de départ de ce mouvement : il serait à situer non pas à la publication en 1328 du Traité des proportions de Thomas Bradwardine mais plutôt chez Richard Kilvington, auquel Bradwardine aurait abondamment emprunté. Cette thèse à contrecourant de l’historiographie habituelle s’appuie sur la mise en parallèle de textes des deux philosophes où apparaît un même souci de réfuter la théorie du mouvement selon les causes d’Aristote en mobilisant un usage renouvelé de la théorie des proportions, témoignant d’une proximité évidente entre les deux auteurs. Les textes de Kilvington disséqués par Jung ne contiennent pas la formulation explicite de la loi du mouvement généralement attribuée à Bradwardine, et ne permettent donc pas d’établir définitivement sa thèse, mais l’étude prouve la nécessité de considérer le mouvement des Calculateurs comme un réseau de philosophes en dialogue dont il est parfois difficile de démêler les relations exactes. Ce point est certainement confirmé par l’étude de Robert Podkoński, qui analyse deux opuscules sur le mouvement attribués à Richard Swineshead (actif dans les années 1340), souvent désigné comme « le Calculateur » à la fin du Moyen Âge. Podkoński voit dans ces deux opuscules deux versions préparatoires des parties du magnum opus de Richard Swineshead, à savoir le Liber calculationum, relatives au mouvement local. L’auteur démontre que ces opuscules attribués à Richard Swineshead témoignent d’une dépendance directe vis-à-vis des travaux de Guillaume Heytesbury, suggérant des liens étroits entre ces deux figures majeures du mouvement. Edit Anna Lukács examine quant à elle une œuvre bien connue de Thomas Bradwardine, qui a cependant peu été étudiée du point de vue de ses aspects calculatoires, à savoir le De causa Dei. Elle souligne de manière convaincante l’usage essentiel des mathématiques dans cette œuvre théologique. En montrant les liens que cette œuvre entretient avec le Traité des proportions de Bradwardine, elle invite à remettre en perspective la place de la physique parmi les différentes disciplines où se sont concentrés les efforts spéculatifs des Calculateurs.
Les deux contributions suivant celle d’E. A. Lukács abordent la diffusion des œuvres des Calculateurs. Celle de Sabine Rommevaux-Tani étudie certains problèmes abordés dans le traité anonyme De sex inconvenientibus. L’autrice établit la date probable de composition de cette œuvre intéressante (située selon elle entre 1335 et 1339), dont elle a publié en 2022 l’édition critique. Établissant que son auteur fut probablement lié au cercle des Calculateurs d’Oxford avant de rejoindre Paris, S. Rommevaux-Tani présente la méthode de mesure du mouvement local proposée dans ce traité, relevant des analyses parallèles à celles de Thomas Bradwardine et de Richard Swineshead. Mark Thakkar s’intéresse quant à lui à la figure de Jean Wyclif (ca. 1330-1384), et se demande s’il doit être inclus dans le mouvement des Calculateurs. Répondant par l’affirmative à cette question, M. Thakkar propose une réflexion approfondie sur la caractérisation de ce mouvement, étudiant par ailleurs la genèse de la dénomination « Calculateurs d’Oxford ». Ses conclusions l’amènent à identifier trois caractéristiques essentielles définissant ce courant (p. 199-201) : (1) la centralité du problème de la mesure d’un mouvement ou d’une grandeur physique ; (2) une terminologie précise caractérisée par le vocabulaire des degrés ; (3) la classification des types de mouvement « difformes », c’est-à-dire non-uniformes.
Alors que la contribution de M. Thakkar invite à réévaluer la délimitation du cercle des Calculateurs, les études qui suivent s’intéressent à la réception de leurs méthodes en Europe. Celle d’Harald Berger offre un prolongement intéressant à l’étude de Stephen Read. Elle se penche sur le traitement du paradoxe du menteur chez Helmold de Zoltwedel, auteur peu connu, qui fut actif entre les universités de Prague et de Leipzig à la fin du XIVe siècle et au début du XVe siècle, et dont le traitement du paradoxe est largement redevable aux travaux des Calculateurs anglais. Joël Biard examine quant à lui la réception de ces méthodes chez Blaise de Parme (†1416). Il montre de quelle manière ce dernier emploie les outils conceptuels qu’ils ont élaborés pour la quantification des qualités. Cette utilisation se caractérise par un intérêt pour la valeur opératoire de ces outils, que Blaise mobilise sans adhérer aux implications ontologiques que ce vocabulaire pourrait sembler entraîner (p. 246). Fabio Seller, qui propose une étude sur Angelo da Fossambruno, actif à la fin du XIVe siècle, complète cet aperçu de la réception des œuvres des Calculateurs en Italie en examinant le commentaire par cet auteur du De tribus praedicamentis de Guillaume Heytesbury. Une étude due à Aníbal Szapiro examine par ailleurs de manière minutieuse le rôle exact du célèbre « théorème de Merton » dans le De visione stellarum de Nicole Oresme (ca. 1320-1382), dont le lien aux Calculateurs d’Oxford est reconnu depuis longtemps.
Cette prise en compte de l’influence des Calculateurs sur certaines disciplines peu représentées dans leurs propres travaux, comme l’astronomie, est complétée par la riche étude de Daniel Di Liscia sur l’influence de leurs concepts et méthodes dans le champ de la métaphysique. Celui-ci démontre comment l’introduction de leurs concepts techniques en métaphysique a conduit au XIVe siècle à aborder la nature des espèces et de leurs relations d’un point de vue géométrique. L’auteur propose un panorama synthétique de l’histoire de cette géométrisation des réflexions sur les espèces à la fin du Moyen Âge et à la Renaissance. Selon lui, son évolution témoigne, en particulier chez Agostino Nifo (1473-1545), d’un rejet progressif de cette approche calculatoire appliquée à la métaphysique (p. 318). Ce déclin des méthodes propres aux Calculateurs est étudié d’un point de vue plus externaliste par Richard Oostershoff, qui l’interprète au prisme de l’évolution des types de traités mathématiques imprimés à Paris au tournant du XVIe siècle. R. Oostershoff diagnostique le changement de statut social du mathématicien au XVIe siècle comme une des causes probables du déclin du genre des calculationes. On notera que cet article est l’un des seuls du volume à évoquer certains acteurs du cercle de Jean Mair, qu’on aurait pu s’attendre à rencontrer davantage ici.
L’article qui clôt le volume est celui d’Edith Sylla, à qui on doit des études fondamentales sur les figures centrales des Calculateurs. Avançant de plus d’un siècle, elle se propose d’élucider leur réception, et celle de Richard Swineshead en particulier, chez Leibniz. Au terme d’une enquête sur les sources disponibles à Leibniz au XVIIe siècle, l’autrice conclut que le savant portugais Alvarus Thomas, ayant composé son Liber de triplici motu au début du XVIe siècle, représente la source probable par laquelle Leibniz a pu se familiariser avec les Calculateurs. Entendant contribuer à réévaluer l’influence sur le long terme de ce courant, E. Sylla affirme que la disparition des références explicites à leurs travaux à partir du XVIIe siècle ne permet pas de conclure au déclin de leur influence tout court (p. 422).
Les contributions rassemblées offrent un ensemble d’études solides, qui couvrent une période étendue de la philosophie et des sciences entre la fin du Moyen Âge et le début de l’époque moderne. À ces contributions s’ajoutent une introduction substantielle de Daniel Di Liscia, un index des manuscrits, un autre des noms et une copieuse bibliographie générale, qui font de l’ouvrage un guide à jour indispensable à quiconque s’intéresse à ce courant essentiel dans l’évolution de la philosophie médiévale tardive. En plus d’offrir de nouvelles perspectives sur les figures les mieux connues de cette tradition, l’ouvrage contient des études novatrices sur plusieurs auteurs relativement méconnus qui s’y rattachent. Les tentatives louables de circonscrire ce qu’il convient d’entendre par « Calculateurs » – en particulier celle de M. Thakkar, mais aussi celles de D. Di Liscia (p. 4) et d’E. Sylla (p. 382-384) – ne résolvent certes pas complètement toutes les questions liées à la délimitation de ce courant. Notamment, son rapport exact avec le thème de la quantification aurait sans doute gagné à être mieux caractérisé, certaines contributions montrant précisément que ses travaux ne se résument pas à des réflexions sur la quantification : jusqu’à quel point faut-il donc superposer le mouvement des Calculateurs à la tendance à la quantification des phénomènes ? Quel rôle convient-il d’attribuer à d’autres courants – comme celui de la médecine, évoqué par E. A. Lukács (p. 106-107) –, qui en sont distincts, dans cette tendance à la mathématisation ? La contribution précieuse d’E. Sylla invite par ailleurs à réévaluer l’histoire des Calculateurs à travers les nouveaux angles d’étude qu’ouvre ce volume. Bien qu’il soit souvent tenu pour acquis que ce courant connut un déclin, comme le suggère le titre du volume, on pourra s’interroger sur la possibilité de réinterpréter ce déclin en termes d’adaptations ou de transformations – transformations sous lesquelles certains de ses résultats, concepts et méthodes auraient été transmis à l’époque moderne. C’est l’un des mérites de cet ouvrage que de fournir, en plus de précieuses études appelées à devenir classiques pour toute personne intéressée par ce courant, un matériau de réflexion pour réinterpréter plus largement l’histoire de la philosophie et des sciences médiévales tardives.
Sylvain Roudaut
Retrouver ce compte rendu et l’ensemble du Bulletin de philosophie du Moyen Âge XXV chez notre partenaire Cairn
Pour citer cet article : Daniel A. DI LISCIA and Edith D. SYLLA (éd.), Quantifying Aristotle. The Impact, Spread and Decline of the Calculatores Tradition, Leiden-Boston, Brill, « Medieval and Early Modern Philosophy and Science » n° 34, 2022, 479 p., in Bulletin de philosophie du Moyen Âge XXV, Archives de philosophie, tome 87/3, Juillet-Septembre 2024, p. 199-202.